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Abstrsd. The maximum capacity for storage of  temporal sequences in a time-summating 
neural network is analysed within a statistical-mechanical framework. Each neuron of such 
a network maintains an activity trace consisting of a decaying sum of all previous inputs 
to that neuron. The maximum storage capacity is expressed as a function of the temporal 
correlations of the local fields of the neurons and evaluated using a perturbation expansion 
in powers of the decay rate. 

1. Introduction 

The enormous upsurge of research into artificial neural networks has been based, by 
and large, on a very simple, discrete-time model of real neurons. In particular, the 
fundamental unit of a binary Hopfield network [l]  is a two-state element which is 
either on or off depending upon whether or not the total input to the unit at the 
previous time-step exceeds some threshold. However, there is growing interest in 
studying discrete-time networks in which the individual neurons have some memory 
of previous states of the network which extends beyond a single time-step [2-81. The 
simplest way to achieve this is to take the neurons to be capacitive so that the total 
input to a neuron is the sum of the present input together with a fractional part of the 
previous input. This results in the neuron maintaining an activity trace consisting of 
a decaying sum of all previous inputs to that neuron. Such a model is a discrete-time 
version [6] of the leaky-integrator model used in analogue Hopfield networks [I]. 

There are a number of reasons why these so-called time-summating neurons are 
of interest. Firstly, recent neurophysiological evidence [9] suggests that the persistance 
of activity on the cell membrane of certain neurons in the cortex occurs over hundreds 
of milliseconds, which is considerably higher than had previously been thought. (A 
single time-step is of the order of one millisecond.) Secondly, time-summating networks 
can display a wide range of dynamical behaviour including frequency-locking and 
chaos [7, 81 and provide a discrete-time alternative to the coupled-oscillator systems 
based upon analogue Hopfield networks [lo]. 

A third reason for studying time-summating networks, which is the motivation for 
this paper, is that in the case of synchronous (parallel) dynamics, such networks have 
certain advantages over standard models in the processing of temporal sequences. For 
example, the deterministic dynamics of a binary Hopfield network [l] with parallel 
update is characterized by a unique, single-step, state transition matrix so that it can 
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only store simple sequences in which a succession of states is unambiguously defined. 
On the other hand, the ambiguities arising from repeated patterns can be resolved by 
time-summating neurons, provided incoming activity is held over a long enough period 
[Z, 51. Another advantage of the latter is that simple on-line learning algorithms have 
been developed which deal with temporal sequences directly in the time-domain [3-51 
so avoiding the need for mapping the temporal patterns into spatial ones of much 
higher dimension. 

We note that an alternative approach to temporal sequence storage has been 
developed for Hopfield networks with asynchronous (sequential) dynamics [ l l -131.  
This involves introducing additional couplings between the neurons which have signal 
transmission delays associated with them. If such an approach is applied to the case 
of parallel dynamics [14] then one obtains a model which is similar in form to that 
of a time-summating network. However, the time-period over which previous inputs 
to a neuron are summed is restricted to the number of delay lines between neuron 
pairs. On the other hand, the neurons of a time-summating network maintain an activity 
trace which is of arbitrary length and which does not require the introduction of 
additional connections. 

In this paper we analyse the capacity for temporal sequence storage of a Hopfield- 
like network with parallel dynamics which has been modified by taking the elements 
of the network to be time-summating neurons. We show how Gardner’s [15] statistical- 
mechanical framework for the space of connection weights between the neurons can 
be extended to the time-summating case. We derive an explicit expression for the 
maximum storage capacity which is a function of the temporal correlations of the local 
fields of the neurons. We also construct a perturbation expansion of this expression 
in terms of the rate of decay of inputs to the neurons and use this to show how the 
presence of extended time-summation leads to a reduction, relative to standard Hopfield 
networks, in the maximum capacity for storage of uncorrelated simple temporal 
sequences in a fully-connected network. The size of the reduction increases with K, 

where K is the stability parameter determining the size of the basins of attraction [IS]. 
Moreover, for K = O  the critical storage capacity is independent of d and coincides 
with the result for a standard Hopfield network. This indicates that the mechanism by 
which extended time-summation affects the critical storage capacity is through an 
effective rescaling of the stability parameter K. The reduction for K > 0 is a consequence 
of the nontrivial temporal correlations between the local fields. This follows from the 
result that if the network is sparsely connected such correlations become unimportant 
and one finds an increase in storage capacity for K > 0. 
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2. Space of interactions 

We proceed by considering a network of N time-summating binary-threshold neurons 
[5,6].  Denote the state of the network at the discrete time f by the N-component ‘spin’ 
vector S(f) = (SI( t ) ,  . . . , S, ( t ) )  where S,(f) = *1 is the output of neuron i. Assume 
that the neurons are connected by synaptic weights J g .  The dynamics of such a network 
in the case of zero noise and vanishing thresholds is given by 

1 
S j ( f ) = s g n ( h j ( f ) ) , h i ( t ) = -  1 J, Sj(r- l )d‘ - ’  mpi r - l  

where hi(t)  is the local field of neuron i and d, d < 1 ,  determines how rapidly the 
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inputs to each neuron decay with time. In the limit d+O equation (1) reduces to the 
usual dynamical rule for Hopfield networks [l], in which the output of the neuron at 
time f only depends on the state of the network at the previous time-step. Note that 
the weights J, can be taken to be time-dependent in which case J,d'-' is replaced by 
J , ( f  - r) [16]. Equation (1) may be rewritten as an iterative equation for the local fields 
which for constant weights is given by 

h ; ( t )  =dhj( t -  I)+N-"* 1 J,i sgn(h,(t-l)). (2) 
Jti 

The dynamics of equation (2), and certain nonlinear generalizations thereof [6], have 
been studied elsewhere [7,8] and can be shown to exhibit complex oscillatory and 
chaotic behaviour. We see from (2) that the mechanism by which a neuron develops 
an activity trace of previous inputs is by means of a slowly decaying local field or 
membrane potential. This should be contrasted with the time-delay approach [14] 
which introduces additional delay-lines between the neurons. The dynamics of the 
latter type of model is described by equation (1) but with the time-summation restricted 
to r <  t,,,, where fmaX is the maximum number of delay-lines between neuron pairs. 
Such a truncated expression cannot be rewritten in the simple iterative form of 
equation (2). 

In this paper we are concerned with the problem of choosing a set of weights J, 
such that p = a N  prescribed temporal sequences ((f( 1 )  = *I; I = 0, 1,. . . , T}, p = 
1,. . . , p ,  i = 1,. . . , N, of length T +  1 are stored, where T is arbitrary. We assume that 
on recall each sequence is seeded by the first element of that sequence. No periodicity 
conditions are imposed on the class of such sequences. Introducing a stability parameter 
K, taken to be a positive constant, we require that a solution set of weights { J , }  satisfies 
the a N T  conditions 

which are a natural extension of the fixed point conditions for standard Hopfield 
networks. Following the statistical approach of Gardner [15], we shall calculate the 
typical fractional volume of the space of solutions {J , }  to equation (3) given that the 
weights are normalized so that .ZJ+iJi = N. The critical value a, of a above which the 
volume vanishes then determines the maximum storage capacity of the network. 

The fractional volume V for a given set of patterns is given by V = n E ,  V,. where 

In the thermodynamic limit the typical fractional volume can be calculated from the 
average of log V, over the quenched distributions of the pattern sequences {&( 1 ) ;  t = 0, 
1,. . . , T}, j = 1 , .  . . , N for fixed i. This may be achieved using the replica method [ 151, 
(log VJc = limn+o[( V l ) f  - 1]/n. If the analytic continuation in n from positive integer 
values to zero is valid then V: may be obtained from (4) by adding a replica index 
to each of the weights J,  and taking a product over n replicas. Using the usual integral 
representation of the theta-functions one can average over the distributions of pattern 
sequences explicitly. For simplicity we take the & ( t ) ,  i = 1, . . . , N, f = 0 , .  . . , T, to be 
independent random variables such that for each pattern p, &'( 1 )  = *I with equal 
probability. Assuming symmetry between the replicas we find in the large-N limit, as 
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n tends to zero, that 
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where 

(5) 

and the measures 9t, 9y are of the form 
dt, 

9t= , = I  n -exp J2p &(r)t ,D;!t , ,&(r'))  (7) 

and similarly for ay. (See appendix for a detailed derivation of equation (5).) 
The T x  T matrix D of equation (7) is symmetric, invertible, has positive 

definite eigenvalues and unit determinant. It may be interpreted as the temporal 
correlation matrix of the local field of neuron i when S ( r ) = c ( r ) ,  r = O , ,  .... T, 
i.e. D , , . = ( f ~ ~ ( r ) h ~ ( r ' ) ) ~ .  In component form, 

mi"',.,') 

D,,,= d'+" C d-2' D,! + d 2 ( 1 - ~ , , ~ ) I ~ , , , ~ - d [ ~ , , , ~ + ~ + ~ , + ~ , , ~ l .  (8) 
r - 1  

The variable q is the Edwards-Anderson order parameter [I51 q =Zjgj((4,)$)e where 
(. . .)T means the average over all parameters { J v , j i  i} which are solutions to equation 
( 3 )  and is determined from the saddle point equation J G / J q  = 0. For q + 1 this leads 
to the maximum value a, of a, i.e. the critical capacity a, is obtained when the fractional 
volume shrinks to zero, and this happens when there is only one solution as indicated 
by q +  1. Note that an alternative expression for G(q) was previously derived in [5]. 
However, equation (6) makes the calculation of the critical storage capacity much 
more tractable and, in particular, allows one to evaluate the contribution from off- 
diagonal terms D,,., r # r', which was not possible in the earlier work. Indeed, it will 
turn out that such contributions are important. 

3. Storage capacity 

We now discuss the analysis of the critical storage capacity 0. Let x,( t, q )  = 
(&t,+ K) / - ,  set x = (x,, . . . , x T ) ,  and denote the argument of the logarithm in 
equation ( 6 )  by H ( x ( t ,  9)). The saddle point equation then becomes 

for d 

To establish the behaviour of the integrand in equation ( 9 )  as q + 1, we asymptotically 
expand H ( x )  with respect to x,, r = 1 , .  . , , T, for x,+ *a. Suppose that x,-' +a for 
all r E I and x,+ --OO for all rd  I where I is some non-empty subset of { 1,. . . , T}. TO 
leading order, the integration range of the variables y , ,  r d  I, in equation ( 6 )  may be 
taken to be (-00, m) and hence these variables can be integrated explici!ly by repeatedly 
completing the square. (Such integrals are well-behaved since the eigenvalues of the 
matrix Dare  positive definite), If the resulting expression for H ( x )  is then asymptoti- 
cally expanded with respect to x,,  r e  I we obtain the leading order approximation 
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where the T x T matrix D'" may be defined iteratively as follows: if the complement 
of the set I is (jl , .  . . , j ,  : p  < T} c (1,. . . , T} then D::? = 61:!"'-"~' where 

The factor d") in equation (10) is a normalization factor involving determinants, and 
will be cancelled by an identical factor arising from the asymptotic expansion of 
JH/Jx,. Note that the formula for DZ!v.."~) in equation (11) is invariant under all 
permutations ofthe indices j , ,  . . . , j,,. Similar expansions may be performed for JH/Jx,, 
s = 1,. . . , T, from which it can be deduced that, for a given I, the contribution of the 
term involving H-'(x) aH/Jx, to the r-integration in equation (9) vanishes as g + 1 
unless S E  I. If this condition is satisfied then H-'(x) JH/ax, =X,e,Dt!lxJ(r)l(s). 
Finally, summing over all possible choices for I,  we find that in the limit g + 1 equation 
(9) reduces to 

where 0,(1)=n,,,B(r,+~)n,.,, e( - r , . -~ )  and 9r is the integration measure of 
equation (7). 

The first point to note about equation (12) is that when K = 0 the r-integrations can 
be performed explicitly leading to the result that aLdl(0) =2/ T for all d, Os d s 1. To 
show this we use the fact that for K = O  the integration ranges of all the r;s can be 
extended to (-CO, 00). We may then integrate over each r,$ I by completing the square 
in an identical fashion to the derivation of equation (10) giving 

.$(s)tSD::!r,. .$(s')] 

where C ( 1 )  is the number of elements of the set I. The result then follows since 
dPP")[det D(1)]-1/2 = [det D]-' l2  = 1 and 2, C ( 1 )  = T ZT-'. A second feature of equation 
(12) is that in the limit d+O the matrices D and D'" reduce to the T x  T unit matrix 
and (12) becomes 

which is identical to the result of Gardner [15] for the storage of static patterns in a 
Hopfield network, except for the modification that (I is multiplied by an extra factor 
of T. This is to be expected since the network is effectively storing aNT uncorrelated 
sequences of step length two when d = 0. 

For non-zero values of the decay rate d we may use the fact that d < 1 to expand 
the integrand of equation (12) in powers of d and perform the average over the patterns 
.$( r) using(.$( r ) t (  r'))= S,,.. To second order in d, the matrix D'" simplifies considerably 
to give 

D!!!= D , !  - d 2  1 [S,.j+i + &+1,jl[~,~.j+1 + S,,+,,jl +O(d' ) .  (14) 
j e ,  
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After some algebra we obtain 
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The expression in curly brackets on the right-hand side of equation ( ! 5 ) ?  F ( r )  say, is 
a monotonically increasing function of the stability parameter K, increasing from the 
value 0 at K = O  to the maximmn value 2 as K + W ,  (see figure 1). Hence, to second 
order in the decay rate d, & ’ ( K )  6 ( Y $ ” ( K )  for all K, with the equality only holding at 
K = 0 when aL”(0) = 21 T. In other words, for small decay rates and non-zero values 
of the stability parameter K,  the presence of extended time-summation leads to a 
reduction, relative to standard Hopfield networks, in the maximum capacity for storage 
of uncorrelated temporal sequences. A numerical evaluation of equation (12 )  for T = 2 
shows that this reduction occurs for all values of d, Os d s 1, (see figure 2). Moreover, 
the size of the reduction increases monotonically with K from zero at K = 0. A physical 
interpretation of these results, which is expected to be true for all T >  1 and d s 1,  is 
that the persistance of network activity over a number of time-steps leads to interference 
between different patterns of a sequence, as expressed by the off-diagonal elements of 
the temporal correlation matrix D, which reduces the storage capacity for K > 0. The 
fact that the storage capacity is independent of d for K = 0 suggests that this reduction 
is due to an effective rescaling of the stability parameter. 

F ’,I 1.2 

I 
0 ”  I 1 I , I 

0 2 4 6 8 1 0  
il 

Figure 1. The O ( d 2 )  contribution to c d 0 ’ ( ~ ) / d d l ( ~ )  as a function ofthe sfability parameter 
n.inunitsafd’(T-I)/T. 

To confirm the above picture, it is interesting to note that if the off-diagonal 
contributions can be neglected then the maximum storage capacity is enhanced, rather 
than reduced, due to the fact that the diagonal elements of D lead to a lower effective 
stability parameter K, i.e. K is rescaled as K(D,,)-”~ (see appendix). One situation in 
which the off-diagonal contributions are negligible [SI is for a sparsely-connected 
network with definite symmetry [17]. In such a model each neuron is connected, on 
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+ d=O.O 
d=0.5 

20  - d=l .O 

- I  15  

1 0  

5 

0 

a< :i 

0 0.5 1 1 . 5  2 2.5 3 
x 

Figure 1. The inverse maximum storage capacity a;' as a function ofthe stability parameter 
I( in the case of sequences of length T = 2, showing the dependence on the decay rate d. 

the average, to C other neurons, where C is of order log N, and the existence of a 
connection from i t o j  implies also the existence of a connection from J to i according 
to some symmetry constraint. The normalization condition for the weights is modified 
to Xjei (JV)* = C and the summation over j restricted to the C sites connected to i. In 
contrast t o  the fully-connected network analysed in section 2, one cannot decouple 
the contributions to the typical fractional volume from the various sites i since the 
symmetry constraint implies that the weights JV and J ,  are correlated. It is necessary, 
therefore, to evaluate the full expression ( V " )  where V = I L  V. and V, is given by 
equation (4), (once the normalization and symmetry conditions have been included). 
The average over the uncorrelated patterns &, i = 1 , .  . . , N, is performed by introducing 
integral representation of the theta-functions in the usual way (cf equation (A2)) and, 
for each p, leads to an expression of the form 

The expression in angular brackets may be evaluated using a cumulant expansion [17] 
and to leading order in 1/C, reduces to [ 5 ]  

Hence, in the large-N limit the contribution from off-diagonal elements of D to the 
typical fractional volume vanishes, (cf equation (A3)). Using a change of variables it 
can be shown that the diagonal elements D,, simply lead to a rescaling of K, K +  

K(D.,)-~" such that the storage capacity increases monotonically with d. A more 
detailed analysis is presented elsewhere [SI. 
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4. Discussion 

In this paper we have evaluated the maximum capacity for storage of uncorrelated 
temporal sequences in a fully-connected time-summating network. We have shown 
that, for K > 0, the presence of non-zero temporal correlations of the neurons’ local 
fields leads to a reduction in storage capacity compared to a standard Hopfield network. 
We have also contrasted this with the case of a diluted network for which an increase, 
rather than a decrease, in storage capacity is found. There are a number of interesting 
aspects of this work which need to be developed further. Firstly, one of the advantages 
of time-summating networks is that they allow the storage of complex sequences. 
However, the above analysis was concerned with simple sequences alone, since in the 
thermodynamic limit the probability that a finite sequence of uncorrelated patterns 
contains a repeated pattern approaches zero. Secondly, it might be possible to evaluate 
equation (12)  non-perturbatively by studying more closely the matrices D and D‘”. 
For example, in the limit d + 1 the former reduces to a well-known form [lS]. Finally, 
having extended Gardner’s analysis to time-summating networks the question of 
generalization in such networks may be tackled [19]. 

P C Bresslofland J G Taylor 
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Appendix 

In this appendix we present the detailed derivation of the expectation (V“), equation 
( 5 ) .  Taking product over n replicas, a = 1,. . . , n, gives 

where J ;  is the realization of J, for replica a. To evaluate (Al) we use the integral 
representations of the theta-functions for each sequence p and replica a, 

Averaging over the random patterns (”( r ) ,  r = 1 , .  . . , T at the sites j f i gives to leading 
order in I j N ,  

where D is the temporal correlation matrix of equation (8). 
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Following [15] we define a variable q+, 

and introduce conjugate variables Fap and €, to implement, respectively, the conditions 
(A4) and Xj+; (J : ) '=  N. Then 

and 

Note that the only modification to the Gardner analysis of [ IS] occurs in the term GI. 
In the large-N limit, (V")  is determined by the saddle point over the variables Fmp, 
q,+. E, of the argument of the second exponential in equation (A5). This saddle point 
is determined by imposing the replica-symmetry ansatz 

4a.p = 4 

Fme = F a < P  (A8) 
€ , = E  for all a. 

Using the identity 

and performing the integrations over the x's in (A6) we obtain equation ( 5 )  in the 
limit n + 0. 

We note that if the contribution to (A6) from off-diagonal elements of D is neglected 
then G, decomposes into a sum over r = 1,. . . , T terms of the form 

which is identical to the corresponding expression for GI in the case of a Hopfield 
network [15], i.e. d =0, hut with the stability parameter K rescaled by (D,,)-"2. Under 
such an approximation the analysis of the typical fractional volume leads to the result 
[SI, a y i ( K ) = =  T-' X , a ? ) ( ~ / m ) >  a L o i ( K )  for K >o. However, for a fully-connected 
network the off-diagonal contributions are non-negligible and, as shown in this paper, 
aid ' (k)<aio i (K)  for K > O .  



842 

References 

P C Bresslofand J G Taylor 

[ I ]  Hopfield J J 1982 Proc. Not1 Acad. Sei. USA 79 2554; 1984 Roc. Nor1 Aeod. Sei. USA 81 3088 
[2] Guyon, I, Personnaz, L, Nadal J P and Dreyfus G 1988 Phys. Rev. A 38 6365 
[3] Stometta W, Hogg T and Huberman B A 1987 Neural Informotion Processing Sysrsms ed D Z Anderson 

(New York: American Institute of Physics) 
[4] Mazer M C 1989 Complex Sysfems 3 349 
[SI Reiss M and Taylor J G 1991 in preparation 

Taylor J G 1987 Inl. J. Neural Sysl. 2 47 
[6] Bresslaff P C and Taylor J G 1990 Roc. Inl .  Conf an Neurol Nelworks (Pmis) (Dordrecht: Kluwer) 
[7]  Bressloff P C and Stark J 1990 Phys. Left. 150A 187 
[SI Aihara K, Takabe T and Toyoda M 1990 Phys. Lerl. 144A 333 
[9] Major G, Larkman A and Jack J 1990 Proc. Physiol. Soc. 23 

[IO] Li Z and Hopfield J J 1989 B i d  Cybern. 61 379 

[ I l l  Kkinfeld D 1986 Roc. Nor1 Acod. Sei. U.S.A. 83 9469 
[I21 Sompolinsky H and Kanter I 1986 Phys. Re". Lell. 57 2861 
[I31 HCR A V M, Sulzer B, Kuhn R a n d  van Hemmen J L 1988 Europhys. Lett. 7 663; 1989 Bid .  Cybern. 

[I41 H ~ R  A V  M, Li 7. and van Hemmen J L 1991 Phys. Reo. Lett 66 1370 
[IS] Gardner E 1988 J. Phys. A:  Math. Gen. 21 257 
[I61 Taylor G 1990 Roc. Inl .  CmX on Neural Networks (Paris) (Dardreeht: Kluwer) 
[I71 Gardner E, Gutfreund H and Yekutieli I 1989 3. Phys. A: Moth. Gen. 22 1995 
[I81 Ohberge I G and Krein M G 1969 Trans. Math, Monographs Am. Math. Soc. 18; 1970 24 
[I91 Bressloff P C 1991 Phys. Re". A submitted 

Atiya A and Baldi P 1989 Int. 3. Neural Syst. 1 103 

60 457 


